TOWARDS A SUSTAINABLE MINING INDUSTRY: THE EXPERIENCE OF ECOMETALES

Iván Valenzuela
CEO, EcoMetales Limited
Lisbon, April 2017
The challenge to concentrate impurities

- Increasing limits to smelter emissions (SO_2, As, Hg).
- Impact on environmental footprint profile of products (e.g.; cathodes).
- Decreasing maximal acceptable levels of impurities in some markets (e.g., China; As,$<0.5\%$).
- Conflicts with local communities to transportation routes or unloading and storage facilities.
- Increasingly restrictive Occupational Exposure Levels (OEL) in processing facilities.
- Impact on hazard classification of concentrates and the associated handling and transportation restrictions (e.g.; MARPOL Annex V restrictions for transportation of bulk products by sea).
Arsenic in the copper mining industry

Sources: Codelco and COCHILCO (2016).
The hidden potential of impurities

Waste of primary mining contain traces that are both impurities and resources

Example of composition of a Cu Concs

Most of these elements end up in wastes. The challenge is decreasing the undesirable impurities and at the same time... Recover some of them as resources.

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
<th>Elemento</th>
<th>%</th>
<th>Elemento</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berilio</td>
<td>< 0,00005</td>
<td>Zinc</td>
<td>2,65</td>
<td>Potasio</td>
<td>0,41</td>
</tr>
<tr>
<td>Magnesio</td>
<td>0,07</td>
<td>Arsénico</td>
<td>1,62</td>
<td>Lantano</td>
<td>0,0010</td>
</tr>
<tr>
<td>Aluminio</td>
<td>1,16</td>
<td>Molibdeno</td>
<td>0,0400</td>
<td>Sodio</td>
<td>0,04</td>
</tr>
<tr>
<td>Calcio</td>
<td>0,29</td>
<td>Plata</td>
<td>>0,01</td>
<td>Fósforo</td>
<td>0,0130</td>
</tr>
<tr>
<td>Azufre</td>
<td>33,4</td>
<td>Cadmio</td>
<td>0,0185</td>
<td>Escandio</td>
<td><0,0001</td>
</tr>
<tr>
<td>Titanio</td>
<td>0,08</td>
<td>Antimonio</td>
<td>0,1380</td>
<td>Estroncio</td>
<td>0,0115</td>
</tr>
<tr>
<td>Cromo</td>
<td>0,0008</td>
<td>Bario</td>
<td>0,0100</td>
<td>Torio</td>
<td><0,002</td>
</tr>
<tr>
<td>Manganeso</td>
<td>0,0334</td>
<td>Cesio</td>
<td>0,000086</td>
<td>Talo</td>
<td>0,0010</td>
</tr>
<tr>
<td>Hierro</td>
<td>19,8</td>
<td>Mercurio</td>
<td>0,00304</td>
<td>Uranio</td>
<td>0,0010</td>
</tr>
<tr>
<td>Cobalto</td>
<td>0,0050</td>
<td>Plomo</td>
<td>0,25</td>
<td>Vanadio</td>
<td>0,0021</td>
</tr>
<tr>
<td>Niquel</td>
<td>0,0048</td>
<td>Bismuto</td>
<td>0,0019</td>
<td>Wolframio</td>
<td>0,0050</td>
</tr>
<tr>
<td>Cobre</td>
<td>27,9</td>
<td>Galio</td>
<td>0,0010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EcoMetales Limited

About us

A flue dust leaching plant followed by a selective arsenic precipitation plant from existing facilities (BioCOP).

- **ECL**, 100% subsidiary of CODELCO, focused on deliver environmental solutions and value recovery for mining residues.
- **ECL** has a total workforce of about 300 people and is supported by 250 environmental permits.
- **ECL** has processed more than 400,000 tons of residues recovering 80,000 tons of copper. Since the start-up of the As stabilization plant, more than 7,500 tons of arsenic have been stabilized.

Key issues for the project development

- Long-term vision, discipline and willingness to take risks.
- The need for low-cost solutions.
- Lack of availability of solutions on the market.
- Focused research. Pilot trials to elucidate unknown process variables and scale-up.
- **Brownfield project**

 The need of optimizing existing facilities.

EcoMetales Limited

About us

- **ECL**, 100% subsidiary of CODELCO, focused on deliver environmental solutions and value recovery for mining residues.
- **ECL** has a total workforce of about 300 people and is supported by 250 environmental permits.
- **ECL** has processed more than 400,000 tons of residues recovering 80,000 tons of copper. Since the start-up of the As stabilization plant, more than 7,500 tons of arsenic have been stabilized.

EcoMetales Limited

About us

- **ECL**, 100% subsidiary of CODELCO, focused on deliver environmental solutions and value recovery for mining residues.
- **ECL** has a total workforce of about 300 people and is supported by 250 environmental permits.
- **ECL** has processed more than 400,000 tons of residues recovering 80,000 tons of copper. Since the start-up of the As stabilization plant, more than 7,500 tons of arsenic have been stabilized.

EcoMetales Limited

About us

- **ECL**, 100% subsidiary of CODELCO, focused on deliver environmental solutions and value recovery for mining residues.
- **ECL** has a total workforce of about 300 people and is supported by 250 environmental permits.
- **ECL** has processed more than 400,000 tons of residues recovering 80,000 tons of copper. Since the start-up of the As stabilization plant, more than 7,500 tons of arsenic have been stabilized.
Human resources
Our people

ECL WORKFORCE

153
MEN
122
WOMEN
31

20% MEN
80% WOMEN
Arsenic stabilization

Alternatives

Scorodite in atmospheric conditions:
- EcoMetales and Dowa process.

Scorodite in Autoclave:
- (POX Process).

Other alternatives in the Industry:
- Calcium arsenite
- Arsenical ferriydrite.
- Arsenic Trisulphide.

Alternatives at pilot scale:
- Bio scorodite
- As in glass
EcoMetales Plant:
Flue dust leaching process

- Refinery and acid plant effluents
- Dilution water
- Flue dust
- Sulphuric acid

Leaching 1 → Leaching 2 → THICKENER

Pregnant Leach Solution (PLS) to arsenic stabilization stage

Leaching residue to ECL as a byproduct

42,308 ton treated residues
71,139 m³

Reference, EcoMetales 2016.
EcoMetales Plant:
Arsenic stabilization process

Limestone slurry
Steam
Magnetite
PLS
H$_2$O$_2$ 70%

Storage tank
Oxidation stage
Precipitation 1
Precipitation 2
THICKENER
FILTER

PLS to SX-EW

7.947 tpy Fine copper

Scorodite to EcoMetales landfill

28.098 ton.
Scorodite

3.545 tpy of arsenic stabilized

Plant mass balance 2016
TCLP/SPLC Stability tests

Key for good TCLP/SPLP results at industrial scale

Ensure a crystalline shape of scorodite. We check this parameter every 10 days using XRD analysis.

A very important issue is the cake washing in the dewatering stage.

The particle size should hopefully be over 5 microns controlled by the seeding, mixing and HRT.

Unexpected change in the feed with high amount of arsenic (III)
EcoMetales stable residue landfill

Surface area: hectares
25

Estimated lifespan: years
15

Ton storage capacity
1,370,000
The Greatest Challenge
The construction of an industrial plant based on a scientific paper

Continuous learning during the plant operation

2006
Precipitation of scorodite at laboratory scale.

2010-2012
- PAA Project
- Pilot Plant Trials
- PAA Construction
- PAA Start-up

2013
Start of operation of PAA.

2014
- Improvement of boiler use and limestone preparation stage
- Optimization of ferric solution preparation stage

2015
- Improvement of oxidation stage

2016
- Improvement of precipitation stage

2017
- Optimization of automatic control

2018
- Continuous learning during the plant operation
EcoMetales

Growth opportunities and development projects
The process considers the leaching of complex copper concentrates through a high-pressure vessel. The arsenic stabilization is also performed inside the vessel.

The project capacity is 200,000 t/y, the go-ahead decision should be taken during 2017.

Advantages:

- Almost zero emission
- Stable residue as scorodite
- Utilization of existing SX-EW facilities
- Low water consumption
- Competitive costs

The schedule defines the start-up for the new facilities in 2020.

Capex USD $ 324.000.000
Stable waste and metal recovery: Exciting market for sustainable mining industry

- Conviction - focus - perseverance
- Identify needs and challenges
- Teamwork - Networking - collaboration
- Partnerships with companies, technology centers and universities
- Conviction - focus - perseverance
- Teamwork - Networking - collaboration
- Partnerships with companies, technology centers and universities
- Conviction - focus - perseverance
- Teamwork - Networking - collaboration
- Partnerships with companies, technology centers and universities
- Conviction - focus - perseverance
- Teamwork - Networking - collaboration
- Partnerships with companies, technology centers and universities

VALUE

- Decreasing the costs of the stabilization process.
- Minimizing the volume of waste.
- Full stability of residues.
- Recovering value from byproducts and “impurities”.
- Recycling the waste.
- Strategic alliances (universities, research centers, tech companies).
- Participation of public and private investment funds to develop environmental solutions.
- Sustainable processes for stabilizing the waste.
- Value recovery from waste.
- Circular economy as a driving force (tailing treatment, among others).
For treating or recovering complex materials, the dilution is not a solution. It may solve short-term issues but it kicks the problem forward.

Safe disposal or, better yet, recovery of impurities as values leads to long-term sustainability.

What is our legacy for future generations?

A challenge from both ethical and business viewpoints.
Contact us for further information

072 Nueva de Lyon St., Floor 17th Providencia, Santiago, Chile.
Ph. (56 2) 2378 4100
Fax. (56 2) 2378 4111

Road to Radomiro Tomic Km. 16 ½ Calama, Antofagasta, Chile.
Ph. (56 55) 2320 950

www.ecometales.cl